Search results for " 37E05"

showing 5 items of 5 documents

On James Hyde's example of non-orderable subgroup of $\mathrm{Homeo}(D,\partial D)$

2020

In [Ann. Math. 190 (2019), 657-661], James Hyde presented the first example of non-left-orderable, finitely generated subgroup of $\mathrm{Homeo}(D,\partial D)$, the group of homeomorphisms of the disk fixing the boundary. This implies that the group $\mathrm{Homeo}(D,\partial D)$ itself is not left-orderable. We revisit the construction, and present a slightly different proof of purely dynamical flavor, avoiding direct references to properties of left-orders. Our approach allows to solve the analogue problem for actions on the circle.

CombinatoricsGroup (mathematics)Primary 37C85. Secondary 37E05 37E10 37E20[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]FOS: MathematicsBoundary (topology)Finitely-generated abelian groupGroup Theory (math.GR)Dynamical Systems (math.DS)Mathematics - Dynamical SystemsMathematics - Group Theory[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Mathematics
researchProduct

Uncommon Suffix Tries

2011

Common assumptions on the source producing the words inserted in a suffix trie with $n$ leaves lead to a $\log n$ height and saturation level. We provide an example of a suffix trie whose height increases faster than a power of $n$ and another one whose saturation level is negligible with respect to $\log n$. Both are built from VLMC (Variable Length Markov Chain) probabilistic sources; they are easily extended to families of sources having the same properties. The first example corresponds to a ''logarithmic infinite comb'' and enjoys a non uniform polynomial mixing. The second one corresponds to a ''factorial infinite comb'' for which mixing is uniform and exponential.

FOS: Computer and information sciencesCompressed suffix arrayPolynomialLogarithmGeneral MathematicsSuffix treevariable length Markov chain[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Generalized suffix treeprobabilistic source0102 computer and information sciences02 engineering and technologysuffix trie01 natural scienceslaw.inventionCombinatoricslawComputer Science - Data Structures and AlgorithmsTrieFOS: Mathematics0202 electrical engineering electronic engineering information engineeringData Structures and Algorithms (cs.DS)Mixing (physics)[ INFO.INFO-DS ] Computer Science [cs]/Data Structures and Algorithms [cs.DS]MathematicsDiscrete mathematicsApplied MathematicsProbability (math.PR)020206 networking & telecommunicationssuffix trie.Computer Graphics and Computer-Aided Design[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]010201 computation theory & mathematicsmixing properties60J05 37E05Suffix[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Mathematics - ProbabilitySoftware
researchProduct

Variable length Markov chains and dynamical sources

2010

Infinite random sequences of letters can be viewed as stochastic chains or as strings produced by a source, in the sense of information theory. The relationship between Variable Length Markov Chains (VLMC) and probabilistic dynamical sources is studied. We establish a probabilistic frame for context trees and VLMC and we prove that any VLMC is a dynamical source for which we explicitly build the mapping. On two examples, the ``comb'' and the ``bamboo blossom'', we find a necessary and sufficient condition for the existence and the unicity of a stationary probability measure for the VLMC. These two examples are detailed in order to provide the associated Dirichlet series as well as the gener…

MSC 60J05 MSC 37E05[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Probability (math.PR)[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]Probabilistic dynamical sources[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Variable length Markov chainsOccurrences of words[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]60J05 37E05FOS: MathematicsMathematics - Dynamical SystemsDynamical systems of the intervalDirichlet series[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Mathematics - Probability
researchProduct

Hyperbolicity as an obstruction to smoothability for one-dimensional actions

2017

Ghys and Sergiescu proved in the $80$s that Thompson's group $T$, and hence $F$, admits actions by $C^{\infty}$ diffeomorphisms of the circle . They proved that the standard actions of these groups are topologically conjugate to a group of $C^\infty$ diffeomorphisms. Monod defined a family of groups of piecewise projective homeomorphisms, and Lodha-Moore defined finitely presentable groups of piecewise projective homeomorphisms. These groups are of particular interest because they are nonamenable and contain no free subgroup. In contrast to the result of Ghys-Sergiescu, we prove that the groups of Monod and Lodha-Moore are not topologically conjugate to a group of $C^1$ diffeomorphisms. Fur…

Pure mathematicsMathematics::Dynamical Systems[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Group Theory (math.GR)Dynamical Systems (math.DS)Fixed pointPSL01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]57M60Homothetic transformationMathematics::Group Theorypiecewise-projective homeomorphisms0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics - Dynamical SystemsMathematics::Symplectic GeometryMathematicsreal37C85 57M60 (Primary) 43A07 37D40 37E05 (Secondary)diffeomorphismsPrimary 37C85 57M60. Secondary 43A07 37D40 37E0543A07Group (mathematics)37C8537D40010102 general mathematicsMSC (2010) : Primary: 37C85 57M60Secondary: 37D40 37E05 43A0737E0516. Peace & justiceAction (physics)hyperbolic dynamicsrigidityc-1 actionsbaumslag-solitar groupshomeomorphismslocally indicable groupPiecewiseInterval (graph theory)010307 mathematical physicsGeometry and TopologyTopological conjugacyMathematics - Group Theoryintervalgroup actions on the interval
researchProduct

Ping-pong configurations and circular orders on free groups

2017

We discuss actions of free groups on the circle with "ping-pong" dynamics; these are dynamics determined by a finite amount of combinatorial data, analogous to Schottky domains or Markov partitions. Using this, we show that the free group $F_n$ admits an isolated circular order if and only if n is even, in stark contrast with the case for linear orders. This answers a question from (Mann, Rivas, 2016). Inspired by work of Alvarez, Barrientos, Filimonov, Kleptsyn, Malicet, Menino and Triestino, we also exhibit examples of "exotic" isolated points in the space of all circular orders on $F_2$. Analogous results are obtained for linear orders on the groups $F_n \times \mathbb{Z}$.

[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]MSC2010: Primary 20F60 57M60. Secondary 20E05 37C85 37E05 37E10 57M60.Extension (predicate logic)Group Theory (math.GR)Dynamical Systems (math.DS)Space (mathematics)20F60 57M60[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsFree groupsOne-dimensional dynamicsFree groupPing pongFOS: MathematicsDiscrete Mathematics and CombinatoricsOrder (group theory)Geometry and TopologyMathematics - Dynamical SystemsMathematics - Group TheoryMathematicsOrders on groups
researchProduct